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ARMA ESTIMATORS OF PROBABILITY DENSITIES
WITH EXPONENTIAL OR REGULARLY VARYING
FOURIER COEFFICIENTS

Jeffrey D. Hart

( Department of Statistics
,«’ Texas A&M University

‘yPropertie- of a probability density estimator having the rational form of an ARMA
spectrum are investigated. Under various conditions on the underlying density’s Fourier
coefficients, the ARMA estimator is shown to have asymptotically smaller mean integrated
squared error (MISE) than the best window-type Fourier series estimator. The most
interesting cases are those in which the Fourier coefficients are regularly varying with
index —p, p > 1/2. For example, when p = 2 the asymptotic MISE of a certain ARMA
estimator is only about 75% of that for the optimum window estimator. For a density f

) o
with support in [0‘, #], the condition p = 2 occurs whenever J'(0+) #£0, !‘('ir—) = 0, and

Qo

/" is square integrable. " e e
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1. Introduction

Suppose xl....,xn are independent observations from a density f with

5 support contained in [0,x]). We consider estimating f(x) by a quantity
' having the rational form

f(x) = (B, + 2 ')f 8 coij)/|1-ae"‘|’- (1.1)
0 j=1 J ’ *

where |a|<l and the éj's are explicit functions of xl,...,x An

n.
estimator as in (1.1) bears an obvious resemblance to autoregressive moving
b average (or ARMA) spectra, and will thus be referred to as an ARMA

estimator.

Apparently, ARMA type probability density estimators have not
previously been considered in the statistical literature. Parzen (1979)
and Carmichael (1984) have, however, proposed autoregressive (or AR) type

estimators of the form

;(xzp) - €|l-51e1x-...-€peip' -2,

Carmichael (1984) obtains a consistency result for f(-;p) by allowing the
AR order, p, to tend to infinity at a certain rate with the sample size,

n. In the current paper, the AR order is fixed at 1 and the MA order tends
to infinity with n, The motivation for the latter scheme is based on the
numerical amalytic device known as the el-transform. which in turn is

related to the notion of a generalized jackknife,

1,
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L AN I

*';m"-\%*bA‘uMﬂﬁ}:‘_‘gj} :_- ARSI



Hart and Gray (1985) studied the use of ARMA representations in
approximating (rather than estimating) density functions. Their results
characterize the integrated squared bias of (1.1) in a number of different
situations. The current paper greatly generalizes the results of Hart and
Gray and also considers the mean integrated squared error (MISE) of (1.1).
;; It is shown that there exist quite general conditions under which an

estimator of the form (1.1) has asymptotically smaller MISE than does any
3 window-type Fourier series estimator. For example, this optimality
property obtains when f'(0+)#0, f'(x-)=0, and f'' is square integrable.
More generally, we obtain results on the behavior of (1.1)'s MISE when the

-

- -

Fourier coefficients of f are either approximately exponential or regularly

varying at infinity.
The paper will be ordered in the following way. In Section 2, the

- -
- «

estimator to be studied is defined, and a number of motivations for its

E W

use are given, Section 3 contains some basic results concerning the MISE

. -

of the ARMA estimator. The asymptotic MISE of the estimator is studied in
Sections 4 and 5 under the aforementioned conditions on the Fourier

coefficients of f. In Section 6 it is shown that when f is smooth (in a

-

well-defined sense) at one endpoint of its support but not at the other,

;
: then the ARMA estimator is asymptotically superior to traditional

: window-type estimators. Cross-validated smoothing of ARMA estimates is
. addressed in Section 7, and some summary remarks are given in Section 8.
)}

“
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2. The Proposed Estimator

Let xl.....x" be a random sample from a density f with support

contained in [0,x]. We shall assume that f has the Fourier series

f(x) - =7} (1+ij;ojcoij), 0<x<m, (2.1)

where ¢, = f; cosjx f(x)dx. Cencov (1962), Kronmal and Tarter (1968),
Hall (1983) and others have investigated density estimators of the form

;n(x;n) . 5! (1+2;i1 ;jcoij). 0<x<mx,

where

14"
4 =n kzl cosjX, .

The estimators to be studied here are

X - . bpzexp(1(m*l)x)
faix:m,a) = fu(x;m) + (2/x) Real [?!'1 —sexpTTx] ‘] . (2.2)

where -1 <a <1, The pair (m,a) is the smoothing parameter of the
estimator and can be chosen from the data by cross-validation. We will
return to this point in Section 7.

Before further discussion of the proposed estimator, we should justify
using the cosine basis as opposed to a basis with both cosine and sine
functions., This study was in part motivated by the problem of estimating

animal abundance using the line transect method (see Gates and Smith 1980

T T T AT A0 T AN, YR U A PRI A A PN S SR IR
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and Crain, Burnham, Anderson, and Laake 1979). The density function

estimated in this setting is typically assumed to be monotone decreasing on
(0,x). Since f(0)#f(x), the periodic extension of f is discontinuous at 0
and =, and hence a cosine-sine Fourier series estimator will perform poorly
near these two points. As shown by Hall (1983), though, the cosine series
estimator is not adversely affected by the condition f(0) # f(x). In
kernel estimation, the analogous means of correcting boundary problems is
the symmetrization device studied by Schuster (1985).

There are a number of ways of characterizing the estimators fn(-;m,a).
First, it is clear that they may be written

1

fn(x;m,a) = (1)

é‘je'lj)(/'l_ae‘ix'2'0 <x<x, (2.3)
where éj = E-j and the Ej's depend only on a and the ;j's. Aside from the
issue of positivity, (2.3) has the form of an ARMA(1,m+1) spectrum, hence
the name ARMA probability density estimator. The form (2.3) suggests that
$n(-;m,a) is well suited for densities with large "power" at either 0 or x
(but not both). While this is so, it will be seen in Section 6 that such
an observation somewhat understates the value of ARMA estimators.

Perhaps a more interesting way of characterizing fn(-.m,a) is in terms
of the generalized jackknife and the numerical analytic device known as the

el-transform. Using (2.2), it is easy to show that, for m > 1,

F (x) - ae’~ F_ .(x)
1 + 2 Reall " 1 ml : (2.4)
) ¢

fn(x;m.a) . x!

1 - ae
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where Fk(x) = Z ‘j eijx, k=1,2,..., and Fo £ 0. The quantity

J=1

: ix ¢ ix
Gm’a(x) = (Fp(x) - ae’™ Fo_,(x))/(1 -ae ) is a generalized jackknife
estimator (as defined by Schucany, Gray, and Owen 1971) of the function

. fix
F(x) le oje .

The problem of choosing a in such a way that Gm a(x) has smaller bias than
F_(x) will be addressed later.
Defining Fk(x) = E(fk(x)), we have

E(Gy 4(x)) = (Fp(x) - ae'XF (x))/(1 - ae'®).

If a is taken to be ’m+1/’m

transform of the sequence {Fm(x)}. This transform, which dates at least to

, then {E(Gm’a(x)):msl,z,...} is the e-

Aitken (1926), is a numerical analytic tool used for accelerating the
convergence of a sequence to its limit. The work of Shanks (1955) gives a
thorough account of e and the more general en-transform. The interesting
and enlightening paper of H. L. Gray (1985) demonstrates the close
connection between many numerical analytic methods (including the e
transform) and the statistical notion of jackknifing to reduce bias. For
more uses of the en-transform in statistical problems, see Gray, Watkins,

and Adams (1972) and Morton and Gray (1984).

Also of interest is the Fourier series of ?n(-;m,a). From (2.2),

fn(x;m.a) = ;n(x;m) + (Z/u)j-;+l Sm " cosjx .




..........

The Fourier coefficients, Sj(m,a), of the ARMA estimator are thus

sj(m’a) = sj ’ j = 0.1,....m .

$maj'm, j=ml,...

This shows that fn(x;m,a) will tend to have smaller bias than fn(x;m) when
the ‘j decay geometrically. As will be seen, though, geometrically
decaying oj's are but a subset of the cases in which Fn(-;m,a) affords a
bias reduction. Hart and Gray (1985) argue that ARMA type approximators
are very generally an effective means of counteiacting the leakage effect

inherent in fn(-;m).

3. Mean Integrated Squared Error of fn(-;m,a)
Define the mean integrated squared error of the estimator f by
J(F,£) = E [ (f(x)-f(x))%x. The MISE will be used as a basis for
comparing ;n(-;m,a) with ?n(';m) and more general Fourier series
estimators.

It is straightforward to show that

J(?n(°;m,a),f) = (2/x) [n'ljglvar(coijl) + azz(l-az)'1 var(cosmxl)/n]

j-m,2
+ (2/ﬂ)j,z+1 (05-00" )" (3.1)

where var(coijl) = (1+¢2j)/2 - ¢§ . The first of the two terms in (3.1)
is the integrated variance of ?n(-;m,a) while the latter is the integrated
squared bias. Note that taking a=0 in (3.1) yields J(f (+;m),f). This is




important since it makes clear that one may always choose a so that the

MISE of an ARMA estimator is no bigger than that of Fn(-;m).
If {am,n:m,n =1,2,...} is a sequence satisfying |“m,n|<1 and
1im inf (l-a: n)>0’ then as n,mee

n,mre

-

- m
IS (osmay ),F) = (le)[n'ljzl var(cosjX, ) §=z+l(¢j-¢ma,jn:',':)2]

+ o(n 1. (3.2)

In this event, then, the effect of a on the variance of the ARMA

m,n
estimator is asymptotically negligible as n and ms=, It will be seen,

though, that there are also cases where a good choice of «

N is such that
2 2 2
m(l-am’n)*c as m,n+=, In such cases the term “m,n(l‘“

-1
m,n) var(coszl)/n
is of order m/n and cannot be ignored in asymptotic considerations.

Before proceeding, we give the following useful lemma.

Lemma 1. Suppose f has square summable Fourier coefficients. Then, as

meo

E var(coijl) = m/2 + 0(Jm).

Jj=1

If it is further required that the oj's be absolutely summable the term
0(ym) may be replaced by 0(1).

Proof: Recall that

m m mo,
jzl var(coijl) =m/2 + (1/2) jzl ozj - jgl Oj.

If the oj's are absolutely summable, it is clear that the last expression




is m/2 + 0(1). By the Cauchy-Schwarz inequality,

T m 2 .172
|j§1 QZJ" : ﬁ(jzl %25 ’

from which the rest of the lemma follows.

4, Densities With Nearly Exponential Fourier Coefficients

In Section 2 it was mentioned that the ARMA estimator should perform
well for densities with geometrically decaying ¢j's, ji.e., ones for which
°j ~ cexp(-aj) as j»=. In this section, we shall investigate the more

general case in which f has Fourier coefficients
0 = e'ajRp(j), i=1,2,0.., (4.1)

where a>0 and Rp is a regularly varying function (defined on [1,=)) with
index p,|p|<°.

An ideal asymptotic comparison of J(Fn(-;m,a),f) and J(fn(-;m),f)
would be to 1anstigate Rn = J:/Jn, where J: =(m12) J(fn(-;m,a),f)
and Jn = q&n J(fn(-;m),f). Instead of this approach, we shall choose a to
depend on at most m, and then study m*n J(?n(-;m,am),f) as n+=, The a, to

be used is one suggested by generalized jackknife theory. According to

Schucany, Gray, and Owen (1972),

. . 0
E((F (x) = rf 1 (x))/(1-r)) =j§1 053

ifrs= Y ojeijx/ Y ojeijx . When (4.1) holds, the last quantity is
j=m+1 J=m

asymptotic to (Omﬂ/om)eix as m»=, Referring to (2.4), then, a

BUSUURY
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reasonable choice for L would seem to be °m+1/ﬂm' Recall that with
@ = /0 E[Gm’a(x)] is the e -transform of Fm(x) (see Section 2).
Defining B(f,f) to be the integrated squared bias of f, it follows

from Theorem 4 of Hart and Gray (1985) that whenever a = m+1/om+e'a(a>0)

Tin B(f, (+sma,).f)/B(T, (im),f) = 0.

When the °j satisfy (4.1) we have the following more precise result.

As a matter of convenience, a_ is taken to be e~ 2

m in the remainder

of this section.
Lemma 2. Let f be a density with Fourier coefficients as in (4.1). Then,

as mo,

-~

B(Fy (+3m), ) ~ (2/m)e (M1 )R2(m) (1.¢722)1,
B(F,(+sm,e™®),F)/B(f (+sm),f) - A =

(1-e722) jzo (R (34m+1)/R (m)-1)%e722], and
Liﬂ A, = 0.

Proof: Define

= f og/(e'za(m+1)R§(m))

Py m j=m+1

- -2aj 2 2
= jzo e Rp(j+m+1)/Rp(m).

Since Rp is regularly varying, it follows that Rﬁ(m+1)/R§(m)+l as me,

)

g
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Hence, for 0<e<e2a

-1, all m sufficiently large and each j>0
e'zajkﬁ(j+m+1)/R§(m) < e 283 (14¢)3*1 = (14¢)expl-j(2a-10g(1+€))]. Since
the last expression is summable, dominated convergence immediately gives
Sm+(1-e’2a)'1, proving the first part of the lemma. The rest of the lemma
is easily obtained by taking a = "2 in B(fn(-;m,a), f) (see (3.1)) and
arguing as we just did.

Under the conditions of Lemma 2, we see that the integrated squared
bias of Fn(-;m,e'a) is asymptotically negligible compared to that of
?n(-;m). Furthermore, appealing to (3.2), it follows that J(Fn(-;m,e'a),f)
is asymptotically no larger than J(fn(-;m),f) as n,m»>, The following

theorem gives a more precise result concerning the MISE's of the two

estimators.

Theorem 1. Let Rp be any regularly varying function (defined on [1,=))

with the representation, for all t sufficiently large,

(x)
Rp(t) = tPexp(c + f; : : dx),

where p#0, |c'<°, and B>1., If the Fourier coefficients of f are

= -aj i i =
6; = e Rp(J) sy 3= 12,000,

then
I(F(o3m),F) = (/%) [m/ne262(e?2-1)711 + 0(1/n) + o(ed)  (4.2)
and

IF (+im,e7),f) = (1/x) [m/n+20%2 m72C ]

+0(1/n) + o(e? m"?), (4.3)

AN ,{.‘.' .',. qu -y “ " ‘,\‘.'\ \J. Y
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where C, = e-2a(1+e-2a)(1_e-2a)-3 - Defining m_ to be the minimizer

of J(Fn(-;m),f) and m; to be the minimizer of m/n + sz¢ﬁm'zca, we also
have

J(fn(-;mn),f) = (2a1tn)'1 [Vogn+2ploglogn] + o(loglogn/n),
and

J(?n(-;m:,e'a),f) = (2a1m)'1 [Yogn+2(p-1)10glogn]
+ o(loglogn/n).

Proof: Equation (4.2) is an immediate consequence of Lemmas 1 and 2. To

obtain (4.3), note that for all m sufficiently large

Rp(j+m+1)/Rp(m)-1 =

(1+(j+1)/m)pexp(f:‘.+j+1 e(x)x'1 dx) -1 =
(1+(3+1)/m)P - 1+ (1+(3+1)/m)P Cexp(/™I*1 e(x)x7t ax) - 17
= pbg:; (j+1)rn"1 + (1 + (j+1)/m)p[exp(cj’m) [m+j*1 e(x)x'1 dx],

J.M
fg+j+1 e(x)x~! dx.

Js

We have

j+1 -1 -1
II:*J+ e(x)x dx,fm (j+1);;£l;i;21 ,

LN T R
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and since Rp is regularly varying, e(x)+0 as x+= (see Seneta 1976, p. 3).

Wy Applying Lemma 2, the above results, and dominated convergence gives

B(fp(ime™),) - (2rme el %2 T (g%t

ES Equation (4.3) follows from this and Lemma 1. For the rest of the proof,
A

! note that m  is such that A(n,m )<0 and A(n,m +1)>0, where

"

o a(n,t) = (1R (2t)e 2% - 2(ne1)RE(t)e 22,

:‘.'

Bk:‘

! Since A(n;+) is eventually continuous, it follows that for all n

e sufficiently large a(n,t, ) = 0 for some t, e[mn,mn+1]. Now A(n,t ) = O
Eé% implies

h f'

L)

ty[1-plogt,/(at,) - (e+ [ e(ax! dx)/at,))

;4 =(2a) 10g(n+1)[1-10g(1/2 + R (2t )exp(-2at )/2)/10g (n+1)].

"

” This implies that t = (2a)™ logn +o(logn). Substitution of this

§§ expression for t, into the previous equation gives

o

!; t, = (2a)'1[logn +2ploglogn + o(loglogn)],

N

&% where we make use of the fact that logL(x)/logx+0 for any slowly varying
g? | function L (see Seneta, p. 18). The expansion for J(€n(';mn)’f) follows
55; upon observing that m = tn+0(1) and using (4.2). The proof for the ARMA
gsz ) estimator follows in an analogous manner. ‘
:?. Theorem 1 gives conditions under which an ARMA estimator has, for all
éé n bigger than some Ny smaller MISE than does the best estimator ?n(-,m).
iﬁf The improvement, though, is only in terms of second order efficiency. This
o
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occurs for two reasons. First, for the oj's considered, the two optimum
ﬁlSEs are dominated by their variance terms, and so the smaller bias of the
ARMA estimator is not reflected in the leading MISE term. Secondly, oj's
of the form (4.1) with p#0 are not near enough to being geometric for the
ARMA estimator to be fully effective. The following theorem provides

conditions under which an ARMA estimator yields a first order type of

improvement over fn(-;m).
Theorem 2 Suppose the density f has Fourier coefficients
0 e L(g) , =1, 2,.., where

L is a slowly varying function such that, for some 6>0, the quantity
by(d) = exp(sm)[L(j+m+1)/L(m)-1] satisfies

2 -2aj
1im b = b ,with 0 <b<e,
jzo m(dle
It then follows that

1im (im0
no»e

_ = im mp/my = a/(a+8),
IS (oim ), f) =

*

where m and m, are as in Theorem 1.

Proof: From (3.1),

(7 (sime™®),0) = (2rn) f 1 eI gnm-n?

j% -,




o (2/x) ¢ 23*8IM  2(g)pe20

*o(oc 26m

Using Lemma 1 it now follows that

I (vime™),1) - (1/2) [w/n + 2e72(8%00  2g)pe-20)
Proceeding as in the proof of Theorem 1,

IE (smm ™), 0) - (1/%)(m /n) = logn(2x(6+a)n)~! + o(logn/n).

The result follows after similarly analyzing the MISE of ;n(-;n).

In Mart “nd Gray (1985), 1t was claimed that ARMA estimators are often
more parsimonious than Fourier series estimators, Evidence of this is seen
in Theorem 2. In fact, under the conditions of this theorem, the limits of
J(f (-;n'.e"),f)/a(f (*:m_),f) and m. /m_ are one and the same, with both

n n n n n'n
betng less than 1. An example of oj's satisfying the conditions of

Theorem 2 is

OJ = 1/cosh(aj) , § = 0,1,...

[t fs easily verified that the value of & for these oj's is 2a, and so the
MISE of ;n(-;a;.e") is asymptotically only 1/3 that of Fn(°;m).
Furthermore, this savings is obtained even though the ARMA estimator uses,
in the limit, only 1/3 as many Fourier coeffictents as does Fn(-;m).

Also of interest is comparing ARMA estimators to general Fourier

series estimators of the form

fw(x) = (1/x) (1+2j§1 wn(J);Jcoij) . (4.;)

L N N T D S B PP e S AT AL 2P B S
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Watson (1969) has shown that the minimum MISE among such estimators is

- 0§ var(coijl)

J".wt = (2/!) jzl VCVICOSJXT) ry n‘j (‘.5)

The following theorem shows that under the right conditions an ARMA

estimator is better than any estimator of the form (4.4),

Theorem 3 Suppose that in addition to the conditions of Theorem 2
|LEi)| <A <= forant j.

It then follows that

Vim J(f (sim €72, 000, = a/(avs),
nee

n,opt

where m; and 6 are as in Theorem 2.

Proof: It is sufficient to show that J ~ logn/(2nax). To do this,

n,opt
we proceed as in the proof of a theorem in Section 4 of Watson and

Leadbetter (1963). If the oj's are absolutely summable, it is easy to

show that
2
= 7 ’s + 0(1/n)
Jn.opt (2/%) 121 T:ETE:TT;} )
We have
o2 -2aj
|¥ ] -{ e ‘<
J*1 1+2(n-1)¢5 j=1 1+2(n-1)e-22J | -
-2aj
2 e
A
(144 le ITiZ(n-l)0j][1*2(n-1)e‘7‘J] :

‘‘‘‘‘‘

"'I\'n' n'."‘.-\_'"‘ R
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[«
n -
(1) ((n-1)71 ¥ 1 s § ety

i= [1*2(n-1)o§] j=C +1

where c = is the greatest integer < log(n-1)/(2a) .

Now, 3 cy+1 o2 < (l-e'za)'l(n-l)'l. Also, since L2 is slowly varying,
n
we have jLz(j)*' as j+= (see Seneta, p. 18). Hence, there exists J, such

that for all j > Jo

[1+2(n~1)¢§]" < [1+2(n-1)"te"23c3Y (¢ > 0)

and t-1e 23t {5 monotone decreasing on (jo,-). It follows that for all n

sufficiently large

C C

n n
(n-1)"1 5 r1+2(n-1)627Y < (n-1)V T [142(n-1)57 e 223y
j=1 J =4,
+0(n~2)
log(n-1)/2a
< (-1 (heztad)ele 22y ge + o(n2)

3o

A

log(n-l) 1 -1 -u]og(n-l) (n-1) -1 )
28("-1) IO (1*‘OCU e TB!T“:TT 1 *du + 0(“ ) .

By dominated convergence, the previous integral tends to 0 as n+=, The

proof of the theorem is completed by showing that

n - e-?aj

-1
* {4a) as n*=,

lTogn j=1 142(n-1)e-¢d]




The previous theorem shows that ARMA estimators are fundamentally

different than Fourier series estimators of the form (4.4). The full
extent to which this is true will become apparent in the next two sections.
Before proceeding, we also note that a result analogous to Theorem 1

can undoubtedly be obtained for densities satisfying ¢, - cexp(-aj"),

h]
0 < y<1l. For these densities, Hart and Gray (1985) show that if

@y = 0,1/4 then a(f'n(-;n.am),f)/s(Fn(-:n).f)m 2s Mo,

5. Densities With Regularly Varying Fourier Coefficients

In a certain sense, the results in Section 4 are not particularly
surprising. The Fourier coefficients of fn(-;m.e") are reasonably well
matched to those of the underlying density, and so one might expect the
ARMA estimator to have much smaller bias than fn(-;m). Of more interest is
to investigate the robustness of ARMA estimators to departures from the
approximate exponential model for the oj's.

In this section we study the case

o =R (D) L= L2, (5.1)

where R_p is a continuous, reqgularly varying function of index -p and

p>1/2, Included in such cases are densities with Fourier coefficients
py-1 .
oj = (1+(j/a)") , j=0,1,..., (5.2)

where 1/2 < p < 2. More generally, any set of square summable oj's that
decay algebraically (see Watson & Leadbetter 1963 and Davis 1977) satisfy
(S.l).

We here present a lemma concerning the inteqrated squared bias of ARMA

estimators when (5.1) holds.




Lemma 3 Let the oj's be as in (5.1), and suppose that m(l-au)*c >0 as

me=, Then

soor (O tnn 7 = mL [T ((1e9)TPe") Py o o(me?).

. ' 2 2 -Zp
Proof: Since the QJ s are regularly varying,jz;*fj/(no') - f; (1+¢y) “Fdy

as me=.  Also, ‘: j.z*l“i(1°')/(no:) = a: m'l(l-a:)'loll(ZC) = f; e 2Ygy.
There exist (see Seneta, pp. 19-20) functions ¢ and &, defined on (0,=),
with the properties ¢(t) - $(t) as t+= and ¢(t) < e)e € (t) for all
t>0. By assumption,

1-(1+e)c/m < a_ <1 - (1-¢)c/m

for 0 < ¢ <1 and all m sufficiently large. [t follows that
j-m
;g! stu-Z+l o an /(me,) <
Tim [~ (me )" 18(2) (1-(1-e)e/m) tMat =
M re

Vim [ (3(ma)/a ) (1-(1-e)e/m™ D au,
more

Making use of dominated convergence, the last limit is

I; u-Pe-(1-edclu-1) g

Obtaining a similar lower bound, and using the fact that ¢ may be taken

arbitrarily small, we have

tim ¥

3T J(mey) = [5(1ey) Pe ey,

mee jamel .Ja

« .
LA D

.....
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The lemma now follows upon combining the previous results.
Some remarks are in order here., First, we see that the choice of T
in Lemma 3 s such that a -~ 1. This is required since the oj's in (5.1)
decay to zero more slowly than do those in the previous section. It is
straightforward to show that if (5.1) holds and |am' is bounded away from
1, the limiting integrated squared bias of ?n(-;m,am) is the same as that
of fn(-;m).
Now, since the oj's are regularly varying with index -p < -1/2, it
follows that
2 2 -1 - -2p
- = + . -
Jekay 957(M0) + (201070 = [G(109) ey (5.3)
Hence, the integrated squared biases of fn(-;m) and f"(-;m,am) (with « as
in Lemma 3) are both of order moi as m+=, However, by choosing L such

that m(l-a )+p,
B(T (=sm,a,),F)/B(f (+:m),f) = (20-1) [g ((14y)™P-e")2qy < 1.

Note, though, that with m(1-a_)sp, the contribution of a, to the integrated
variance of the ARMA estimator is not insignificant., The smaller bias of
the ARMA estimator does not, then, immediately imply that its MISE fis

smaller than that of ;n(°;m). This point is investigated in the next

theorem,

Theorem 4 Let the Fourier coefficients of the density f be as in (5.1),

and suppose that m(l-am)*c > 0 as m+=, Then, defining

L™ f;((l+y)'°-e'cy)zdy.




Afp(eima ), f) = w7 (m/n) (1+(2¢)7) + 2med 1) ]

+ o(m/n + mo:), and

I eim)af) = " lem/n + 2meZ(20-1)71]

+ 0(ym/n) + o(me?) .

*
n

[(m/n)(1+(2¢)°Y) + 2(26-1)1 j’z+1 o?] and J(f (+:m),f), then

Furthermore, if m_ and m, are the minimizers of, respectively,

I (eamesae) ) /AF (+5m) )
n

(m /m ) (1+(2¢)) » [(zp-l)xp’c]I/(Zp)(1+(2c)-1)1-1/(2p)

as n+e,

Proof: The two MISE expressions follow from (3.1) upon applying the
condition m(l-am)*c, Lemmas 1 and 3, and expression (5.3). Now, using

(5.3) and the first part of Theorem 4,

AEplesmag) ) - =T/ (1+(20) ™) + (2e-1) 1) o T o0,

If m: is the minimizer of this last expression, then the continuity of R_p

2 . a1 -1 § *
implies that R_p(tn) A"*n"" for some t_ elm ,m +1], where
A = 2(29-1)1p c(1+(2c)’1)'1. By 5°, p. 21 of Seneta, there exists a

regularly varying function r of index 1/(2p) such that

r/RZ (1) -t as tee,
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Since thr= to, and hence m:, are asymptotic to r(An). We now have
AF (o -1 -1 -1
oim_.x »),f) ~ x (1+(2c) *)2p(2p-1)""r(An)/n.
n n*m,

In a similar way, it can be shown that

IF(+im ). F) - 27 2p(20-1) " r(2m) /0.

The rest of Theorem 4 now follows upon using the facts m; ~ r{An),
mo~ r(2n), and r is regularly varying of index 1/(2p).

To determine the amount of improvement (if any) that is possible with
an ARMA estimator, it would be desirable to choose ¢ to minimize the
limiting ratio of MISEs in Theorem 4. This minimization problem appears to
be intractable analytically, although one could certainly determine the
best ¢ numerically for any given p. In the following theorem it is shown
that the choice ¢ = p is such that the limiting ratio in Theorem 4 is less
than 1 for each p > 1/2. Hence, under the conditions of Theorem 4, it is
.always possible to obtain asymptotically smaller MISE with an ARMA

estimator than with Fn(-;m).
Theorem 5 Let the conditions of Theorem 4 hold with ¢ = p. Then, for each
p>1/2,

a * -
}‘m J(fn( ';anGm;) ’f)/J(fn(';mn) ’f) =

B, = [(2e-1)1 ) 1M/ (20)(14(20) )11/ (20) ¢y,

Proof: Using the fact that (1+y)™® e™® > 727 for y>0, it is easy to
show that (2p-l)Ip o ¢ 1/(2p). Hence, B, < (zp)-ll(Zp)(1+(2p)-1)1-1/(29)’

2 . 1, -/ lf .f'f 'f ~' ar U | -"'_- "o, ,“~(~(‘ e f\f~f l""l ! ' L4 ~' ‘w TR T e R -‘--_ L -_ PR e e e N e .
(A 2 ) 3 o 0 B L B B » P a a

. A% 4% €%,

B e
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which is less than or equal to 1 iff 2plog(2p) - (2p-1)10g(2p+1) > 0.
Defining
“ g(x) = xlogx - (x-1) log(x+l) for x > 1,

it is now sufficient (since g(1) = 0) to show that g'(x) >0 for x > 1. We
;- have g'(x) = 2/(x+1)-log(1+x'1) with g (1) = 1 - log2 > 0. Since g'}x) +0
ﬂ' as x > =, the result will follow if g' is monotone decreasing on (1,=). . We
have g''(x) = -2(x+1)'2 +x'1 - (x+1)'1, which is less than 0 on (1,«), and
the proof is complete.

Recalling the el-transform motivation for ARMA estimators, it is of

o interest to determine if a = ¢ ., /¢ satisfies m(1-a )+p when (5.1) holds.

4

* As shown by Seneta, pp. 2-7, R_, is regularly varying with index -p if and

s,

t% only if it satisfies, for all t sufficiently large,

B R_,(t) = t™Pexp(n(t) + fEe(x)x ~lax), (5.8)

B

N

4

ﬁ: where n is a bounded, measurable function on [B,=) such that n(t)*co as

o -
too (|c0|<°), and € is a continuous function on [B,=) such that e(t)+J as

22 t+=, Now, if the function n in (5.4) is replaced by a constant, it is easy

éé to show that m(l-R_p(m+1)/R_p(m))»p as m+=, Therefore, Theorem 5 implies

2 that under a slightly stronger condition on the oj's than imposed by (5.1),

o the MISE of an ARMA estimator with oy = ¢ .,/¢ is asymptotically smaller

0" Y

ﬂf than that of fn(-;m). Since (5.4) does not decay geometrically, the last

T result gives a good indication of the versatility of the el-transform based

K

& ARMA estimator.

k. We close this section with a corollary that extends the results of

: Sections 4 and 5.

o

[\
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Corollary 1 Suppose the ¢j's in Theorems 1-5 are replaced by (-1)j¢j for

p j=12,..., and the respective values for a are replaced by -a. Then the

b results of the five theorems are unchanged.

A Proof: Considering expression (3.1), it is clear that J(?n(-;m,a),f) =
J(Fn(o;m,-a),f*), where f and f* have Fourier coefficients, respectively,

- j o i = o o
oj and ( 1) ¢Jg J 1,2,..

6. Densities That Are Smooth at One Endpoint but Not the Other

In this section it is shown that the results of Section 5 are
applicable under simple qualitative conditions concerning the smoothness of
: f. When these conditions hold, it is found that a result like that in
Q Theorem 5 remains valid even when Fn(-;m) is replaced by the very best
estimator of the form (4.4). To obtain this somewhat surprising result, we
first state the following lemma. The proof is analogous to that of the
first theorem in Section 3 of Watson and Leadbetter (1963), and is thus

omitted.
Lemma 4 Suppose that for some p > 1/2 jp|oj|*K1/2>0 as j*=. Then

Jn,opt - nl/(ZP)‘ln'l(ZK)l/(ZP)Ig (1+t2p)-1dt,

_where J is defined by (4.5).

n,opt
The following theorem will allow us to obtain the most interesting

results of this paper.

Theorem 6 Suppose that f has 2k derivatives (k>1) on [0,r] with f(Zk)
square integrable. (The quantities f(")(0) and f(r)(ﬂ) are defined to be
f(r)(0+) and f(r)(n-), respectively,) 1If f(r)(O) = f(r)(n) =0 for

‘ﬁ. " v . ,’4‘ Y. _‘(.-- _’.‘-.‘ .'v-g e A A ..v '-,‘v&, * " _‘- _‘r\r\-\' *nr\u'\r v‘\r..-"-.'\-'\('\.'\n‘ I\-'\I‘-J-’J e -'.-". L -'\-‘. - e -".-" -' L4
8 A L aX 2 » «B o, » L g




F=1, 3,...,2%-3, £2k- 10y 2 0 and £(2%-1)(0) # 0, then (with

m(l-am)*Zk)

IF esmiaa ),6) < al/ (1ol ¢ (2D) gy (W20 (6.0
n

1m O(F (osm e x) ) /3(F (e5m ),f) =
n
[(ak-1)1, 2V (3 (140800 H1IV/ KD 1y ang (6.2)

. a *
LA IE N DR AT

¢, L2 M)y (aksin(e/ (a0 < 1, (6.3)
where

. ¢, = [(ae1)/(a-1) 1Y 6D (i, ) 17(8K)

1t £0M0) = #M(x) = 0 for r = 1, 3,...,2-3, £(ZD(0) = 0, £(Z-1)(y
# 0, and m(1+am)+2k, then the result of the theorem is the same except that

f(Zk'l)(O) is replaced by f(Zk’l)(n).

Proof: Using integration by parts we have

(-D*o; = 3202 (0) + 4 57, where

05 o = Ig f(2k)(u)cosjudu.

Since f(Zk) is square integrable, °j 2k*0 as j+=, It follows that the
¢j's are regularly varying with index -2k and that j2k\oj|*|f(2k'1)(0)| as
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it j*=. Results (6.1) and (6.2) now follow upon applying Theorems 4 and 5,
éf respectively. The limit in (6.3) is a consequence of Theorem 4, Lemma 4,
%E- and the fact that

i

' I;(l+t4k)-1dt = laksin(x/(4k))17! .

o It is argued in the Appendix that the limit in (6.3) is less than 1. The
i( case where f(Zk'l)(o) = 0 and f(Zk'l)(n) # 0 follows from Corollary 1.
& - The special case k = 1 in Theorem 6 is worth discussing. In this

Ry case, we have either f (0) # 0, f (x) = 0 or f (0) = O, f'(n) #0. In
W either situation, the density tends smoothly to its limit at one endpoint
‘; but not at the other; exponential-like densities are one example of such
;3 behavior. The poor performance of the Fourier series estimator fn(o;m)

ig when f'(0) # 0 has been noted by Buckland (1985) in the setting of line

AN transect sampling. Theorem 6 shows that in such cases the MISE of an ARMA
;; estimator is (for large enough n) smaller than that of the very best

»  Fourier series estimator of the form (4.4) (which, of course, includes

N ‘€n(-;m) as a special case).

: Table 1 shows how much of an improvement in MISE is obtained with the
rgi ARMA estimator in certain cases where the oj's decay algebraically. The
- cases p = 2, 4, 10, 20 correspond to k = 1, 2, 5, 10 in Theorem 6. Note
?2 that when p = 2 (the situation discussed in the previous paragraph) the

0 asymptotic MISE of the ARMA estimator is only about 64% ana 77% of that

i; ~ for, respectively, ?n(o;m) and the optimum Fourier series estimator. It

‘ is also interesting that the ARMA estimator uses, in the limit, only 51% as
ﬁ many Fourier coefficients as does ?n(-:m).

o
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7. Choice of Smoothing Parameter by Cross-Validation

In the practice of density estimation, one must usually select
smoothing parameters via some data-driven method. As a result, data-based
density estimators are not as efficient (at least in small samples) as
theory would suggest. Hence, it is not realistic to expect that the MISE

improvement discussed in previous sections is fully attainable in practice,

except perhaps in very large samples. However, some improvement in small
samples seems likely if the ARMA estimator's smobthing parameter is
reasonably chosen. This is borne out in the simulation study of this
section.

One means of choosing the smoothing parameter, (m,a), of the ARMA ~
estimator is the cross-validatory method introduced by Rudemo (1982) and
Bowman (1984). In our setting, this method chooses the pair (m,a) that
minimizes

N A n -
R(m,a) = gfﬁ(x;m,a)dx - (2/n) 121 £ 4 (gimsa), (7.1)

where ?n j indicates the estimator calculated by deleting the data value

’

xi. Rudemo (1982) showed that ﬁ(m,a) is an unbiased estimator of the risk

R(m,a) = J(f,(+im,a),f) - [5Felx)dx.

A number of results now exist showing that density estimates chosen by

cross-validation are asymptotically efficient; see, for example, Hall

(1983, 1985), Stone (1984), and Hall and Marron (1985).




To investigate the behavior of cross-validated ARMA estimates, a small

simulation study was conducted. The density considered was
f(x) = 2" 214”4y (17471 0 < x < 1, (7.2)
which has algebraic Fourier coefficients

0 - (32971, 5 = 1,2,... .

-4%) and f (x) = 0,

This density is of interest since it has f'(O) = -2(1-e
and thus satisfies the conditions of Theorem 6.

For (7.2) and n = 50, the minimum MISE among ARMA estimators is
.00633. This minimum occurs at (m,a) = (1, .64). Among Fourier series
estimators fn(-;m), the optimum m and MISE are 5 and .04160. Since
".00633/.0416 = .152, we see that the asymptotic relative efficiency of .64
from Table 1 understates the improved efficiency of the optimum ARMA
estimator at n = 50,

Twenty independent random samples of size n = 50 were generated from
the density (7.2). This was done by generating values from the exponential

2%

density g(x) = 2e I(o .)(x). and using the fact that, if Y has density

g, then

X = YI(O,“)(Y)

*iky (800 g (2501)0 0T (25-1) 5,250 1))

has density (7.2). Since little of the mass of g is larger than =, the

graphs of f and g on (0,x) are virtually indistinguishable.




For each of the twenty data sets, the minimizer of R (defined by
(7.1)) for O

A

a <1, 1 <m< 20 was approximated. Also, the minimizer of
i(n.O) for 1 < m < 20 was determined. This latter value of m is simply a
cross-validatory choice of the smoothing parameter of Fn(-;m) (see Hart
1985 and Diggle and Hall 1986 for more on this subject). The integrated
squared errors of the cross-validated ARMA and Fourier series estimates
were determined for each data set. Denote these two ISEs 1, and I,
respectively.

The results of the simulation are summarfized in Table 2. The fact
that average IA was a bit larger than average ‘F is misleading. In 16 of
the 20 cases, the ratio 1,/1. was between .151 and .690. Note the trimmed
mean and the confidence interval for the median of IA/IF in Table 2. These
more accurately reflect the overall performance of the two cross-validated
density estimates. From the 16 cases in which lA was less than IF. a
typical comparison of the two estimates is given in Figure 1. The
qualitative improvements obtained with the ARMA estimate are a better
estimate of f(0) and an absence of spurious bumps. See Hart and Gray
(1985) for further discussion of the qualitative properties of ARMA
approximators.

It is also important to point out what happened in the four cases
where 1, > Ie. Figure 2 is a plot of the 20 values of (m,a) chosen by
cross-validation. In the cases where [, > ‘F' cross-validation chose
too large an a and/or too large an m. When a is too near 1, the ARMA
estimate tends to be too large near 0, thus inflating the estimate's

integrated squared error. That cross-validation would

IO AP RPN NS
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occasionally choose too rough an ARMA estimate is not unexpected., It is
well known from other settings that in small samples cross-validation tends
to drastically undersmocth around 5-20% of the time (see, e.g., Hart 1985).
Clearly, further experimentation is needed to determine how

efficiently cross-validation smooths ARMA estimates. Some very recent work
of Scott and Terrell (1986) shows that a biased version of cross-validation
provides more efficient kernel estimators in moderate and large samples.
Such an idea is also worth pursuing in the setting of ARMA estimators. For
example, 2a modification of i(n.a) that places a more severe penalty on
large values of ‘a' would discourage the occasional undersmoothing observed

tn the simulation study.

8. Concluding Remarks

We have shown that under a variety of conditions, a density estimator

having the rational form of an ARMA spectrum can yield an improvement in

MISt over the very best Fourier series estimator of the form (4.4),
Furthermore, if its smoothing parameter is chosen properly, the ARMA
estimator never has larger MISE than that of the simple Fourier series
estimator fn(-;m). Although further work is needed on the data-based
smoothing of ARMA estimates, the results of Section 7 are fairly
encouraging with regard to cross-validated smoothing.

The tdeas of this paper could also be applied to other density

estimators of the type

. m .
fa(x) = (1/%) [1+2 jzl Wi ¢ cosjx) .




The form (2.4) immediately suggests "jackknifed® versions of in. So long

as the truncation bias of ;. is not dominated by the bias due to the

wj's. results analogous to, for example, Theorem 5 could be established
for a jackknifed f..

Finally, our results could also be extended somewhat by considering
estimators based on a sine-cosine basis and allowing a to be

compiex-valued. In fact, the results of Hart and Gray (1985) apply to the

bias of such estimators.
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Appendix

Proof of (6.3): As stated in the proof of Theorem 6, we need only
show that the limit in (6.3) is less than 1. For k = 1 or 2, the
inequality follows from Table 1. For k = 3,4,..., it is sufficient to show

1

that €, 271/ (%) 1 since 0 < xsinx < 1 for 0 < x ¢ w12, Mow,

ckz'l/(‘k) s ‘k(‘k‘l)-l(l§(‘k)-l)1-1/(‘k)((‘k‘1)12k’Zk]l/(‘k)

! cak(4k-1)"1 (10 (k) 7111/ (80D ()17 (8K)

in the proof of Theorem 5. The last quantity is less than or equal to 1
for k = 3, 4,... if

g(x) = xlog(x-1) - (x-1) log(x+1) > 0

for x > 12. The rest of the proof proceeds exactly as in the proof of
Theorem 5. (Note that g(12) > 0.)
Calculation of numbers in Table 1: The requisite quantities can all

be calculated analytically except for

(20-1)1 =2 - (20)°} - 2(20-1)e% (o)

*

where Ek(y) = f; e Yt Kdt is the so called exponential integral. The
table values were obtained by using the approximation of either Ep(p) or

epip(p) given in Abramowitz and Stegun (1972).
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Table 1. Asymptotic MISE of ARMA and Fourier Series Estimators for
Densities With Algebraically Decaying Fourier Coefficients

1/2

(It is assumed that j°‘¢j|*K as jo.)

Type of Estimator

Fourier Series

Optimum with 0-1
p ARMA Fourier Series Weights
1 1.3579 1.5708 2
2 .8534 1.1107 4/3
3 .7968 1.0472 6/5
4 .7890 1.0262 8/17
10 .8335 1.0041 20/19
20 .8826 1.0010 40/39

Notes: For a given p and estimator, a table value is the limit of
n11/(20)g mise, where 8 = w(26)71/(2%) petails of how
the values were obtained are given in the Appendix. For a given p,
the limiting ratio of ARMA truncation point (m:) to Fourier
series truncation point (mn) is (1+(2p)'1)'1 Ap/FSp, where Ap and
FSp are the table values in, respectively, the first and third

columns above,
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Table 2. Summary of Simulation Study

Type of Estimate

ARMA Fourier Series
Average ISE .0542 .0522
Median ISE .0183 .0354
Trimmed mean ISE .0287 .0390

The trimmed means exclude the three (out of 20) largest values of
ISE. A 95% confidence interval for the median of IA/IF is
(.3607, .6581), where I, and I are, respectively, the ISEs of

cross-validated ARMA and Fourier serfies estimates.
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Captions for Figures

Figure 1. Wrapped Exponential Density, ARMA Estimate, and Fourier
Series Estimate. The solid curve is the density (7.2). The ARMA estimate
has the higher value at 0 and no spurious bumps. The two estimates were
calculated from the same set of data, each being fitted by cross-
validation,

Figure 2. Distribution of Smoothing Parameters in Simulation Study.
The smoothing parameters were chosen by cross-validation. The four largest
values of m correspond to the only cases where the ISE of the ARMA estimate
was larger than that of the Fourier series estimate. The MISE optimum

value of (m,a) is (1,.64).
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